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Ascent Sequences and Fibonacci Numbers
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Abstract. An ascent sequence is one consisting of non-negative integers in which the size of each letter
is restricted by the number of ascents preceding it in the sequence. Ascent sequences have recently been
shown to be related to (2+2)-free posets and a variety of other combinatorial structures. Let Fn denote
the Fibonacci sequence given by the recurrence Fn = Fn−1 + Fn−2 if n ≥ 2, with F0 = 0 and F1 = 1. In this
paper, we draw connections between ascent sequences and the Fibonacci numbers by showing that several
pattern-avoidance classes of ascent sequences are enumerated by either Fn+1 or F2n−1. We make use of both
algebraic and combinatorial methods to establish our results. In one of the apparently more difficult cases,
we make use of the kernel method to solve a functional equation and thus determine the distribution of some
statistics on the avoidance class in question. In two other cases, we adapt the scanning-elements algorithm, a
technique which has been used in the enumeration of certain classes of pattern-avoiding permutations, to
the comparable problem concerning pattern-avoiding ascent sequences.

1. Introduction

An ascent in a sequence x1x2 · · · xk is a place j ≥ 1 such that x j < x j+1. An ascent sequence x1x2 · · · xn is one
consisting of non-negative integers satisfying x1 = 0 and for all i with 1 < i ≤ n,

xi ≤ asc(x1x2 · · · xi−1) + 1,

where asc(x1x2 · · · xk) is the number of ascents in the sequence x1x2 · · · xk. An example of such a sequence
is 01013101542, whereas 0012042 is not since 4 exceeds asc(00120) + 1 = 3. Ascent sequences were first
studied in a paper by Bousquet-Mélou, Claesson, Dukes, and Kitaev [3], where they were shown to have
the same cardinality as the (2+2)-free posets of the same size and the generating function was determined.
Since then they have been studied in a series of papers by various authors where connections were made to
many other combinatorial structures, including certain integer matrices, set partitions, and permutations.
See, for example, [4, 5, 9] as well as [8, Section 3.2.2] for further information.

Let Fn denote the n-th Fibonacci number defined by Fn = Fn−1 + Fn−2 if n ≥ 2, with F0 = 0 and F1 = 1. See
A000045 in [11]. In this paper, we draw connections between ascent sequences and Fibonacci numbers by
showing that certain avoidance classes of ascent sequences, each involving two patterns, are enumerated
by Fn+1 or F2n−1. This extends recent work in [6], where the problem of avoidance of a single pattern was
considered.
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We will refer to a sequence of non-negative integers, where repetitions are allowed, as a pattern. Let
π = π1π2 · · ·πn be an ascent sequence and τ = τ1τ2 · · · τm be a pattern. Then we say that π contains τ if π
has a subsequence that is order isomorphic to τ, that is, there is a subsequence π f (1), π f (2), . . . , π f (m), where
1 ≤ f (1) < f (2) < · · · < f (m) ≤ n, such that for all 1 ≤ i, j ≤ m, we have π f (i) < π f ( j) if and only if τi < τ j
and π f (i) > π f ( j) if and only if τi > τ j. Otherwise, π is said to avoid τ. For example, the ascent sequence
010103422451 has three occurrences of the pattern 110, namely, the subsequences 110, 441, and 221, but
avoids the pattern 201. Note that within an occurrence of a pattern τ, letters corresponding to equal letters
in τ must be equal within the occurrence.

To be consistent with the usual notation for ascent sequences which contains 0’s, we will write patterns for
ascent sequences using non-negative integers as in [6], though patterns for other structures like permutations
are traditionally written with positive integers. Thus, the usual patterns will have different names here; for
example, 123 becomes 012 and 211 becomes 100. Given a pair of patterns τ and ρ, let Sn(τ, ρ) denote the set
of ascent sequences of length n avoiding both τ and ρ, and let An(τ, ρ) be the number of such sequences. By
the (i, j)-avoidance class corresponding to a given sequence (an)n≥0 of non-negative integers, we will mean
the (Wilf) equivalence class comprising all sets Sn(τ, ρ) such that |Sn(τ, ρ)| = an for all n ≥ 0, where i and j
denote the respective lengths of τ and ρ.

Below, we determine all members of the (3, 3)- and (3, 4)-avoidance classes of ascent sequences corre-
sponding to Fibonacci numbers. Furthermore, in several cases, we establish the distribution for the number
of ascents on the set Sn(τ, ρ) in question. We make use of both algebraic and combinatorial arguments to
establish our results. For the cases of avoiding (110, 0122) and (100, 0121), we adapt the scanning-elements
algorithm [7], a technique which has been used in the study of permutation patterns, to the ascent sequence
structure. This enables one to write a system of equations involving various generating functions which
can be solved to determine the generating function for An(τ, ρ) in each case.

In the final section, we consider the pattern pair (021, 0122) (or, equivalently, the pair (021, 120) via
bijection), which seems to be more difficult to enumerate. To do so, we first refine the numbers An(021, 0122)
according to three statistics on Sn(021, 0122) which record the number of ascents, the largest letter, and the
last letter of a sequence. See the paper by Zeilberger [12] for a discussion of a general strategy of refinement
which we are adapting to this case in determining an unknown integer sequence. Next, we determine a
three-parameter functional equation satisfied by the generating function, which we denote by f (x; u, v,w),
for the joint distribution polynomial of the aforementioned statistics. We then use the kernel method (see [1])
to solve this functional equation and find f (x; 1, 1, 1), which will imply An(021, 0122) = F2n−1. Furthermore,
one may determine the full expression for f (x; u, v,w) and various distributions on Sn(021, 0122) involving
combinations of the aforementioned statistics may then be obtained from it, leading to various refinements
of the numbers F2n−1.

2. Avoiding Two Patterns of Length Three

The following proposition gives the two members of the (3, 3)-avoidance class for ascent sequences
corresponding to the Fibonacci number Fn+1.

Proposition 2.1. If n ≥ 0, then An(000, 001) = An(000, 010) = Fn+1.

Proof. We shall show that An(000, 001) = Fn+1 by induction on n, the n = 1 and n = 2 cases clear. If n ≥ 3, then
there are Fn−1 members of Sn(000, 001) in which the largest letter ` appears twice, as seen upon removing
both copies of the letter `, which are adjacent and must directly follow the first occurrence of the letter `− 1.
Note that n ≥ 3 implies ` ≥ 1 since 000 is not allowed. Similarly, there are Fn members of Sn(000, 001) in
which the largest letter appears once. There are then Fn−1 + Fn = Fn+1 members of Sn(000, 001) in all, which
completes the induction. A similar proof shows that there are Fn+1 members of Sn(000, 010).

Recall that ∑
n≥0

F2n−1xn =
1 − 2x

1 − 3x + x2 ,
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where F−1 = 1. Our next result concerns the (3, 3)-Wilf equivalence class for ascent sequences corresponding
to the number F2n−1.

Proposition 2.2. If n ≥ 0, then An(u, v) = F2n−1 for the following pairs (u, v):

(i) (021, 101) (iii) (101, 102)
(ii) (021, 120) (iv) (101, 110).

Proof. (i) We will determine more. Let f (x, q) denote the generating function which counts the members of
Sn(021, 101) according to the number of ascents, i.e.,

f (x, q) =
∑
n≥0

 ∑
π∈Sn(021,101)

qasc(π)

 xn.

Note that if π ∈ Sn(021, 101) contains at least two distinct letters, then it must have the form

π = 0i0 1i1 · · · `i`π′,

where ` ≥ 1, i0, i1, . . . , i` > 0, and π′ is possibly empty and starts with 0 if non-empty. Note that π′ is itself an
ascent sequence on the letters {0, ` + 1, ` + 2, . . .}which avoids 021 and 101. Conversely, an ascent sequence
of the form π, with π′ as described, is a member of Sn(021, 101). Upon including the empty sequence and
sequences of the form 0n for some n ≥ 1, we have

f (x, q) = 1 +
x

1 − x
+

( x
1 − x

)
·

 qx
1−x

1 − qx
1−x

 f (x, q) =
1

1 − x
+

qx2

(1 − x)(1 − x − xq)
f (x, q),

since each run of letters j in π for 1 ≤ j ≤ ` contributes one ascent, with ` any positive number as n ranges.
Solving for f (x, q) gives

f (x, q) =
1 − (1 + q)x

1 − (2 + q)x + x2 ,

and taking q = 1 yields the first case.
(ii) This follows from combining Proposition 4.1 and Theorem 4.5 in the last section.
(iii) Let 1(x, q) denote the generating function which counts the members of Sn(101, 102) according to

the number of ascents. First note that a non-empty ascent sequence πwhich avoids 101 and 102 is either of
the form (i) π = 0π′, where π′ contains no 0’s, (ii) π = 00π′, where π′ may contain 0’s, or (iii) π = 01π′0 · · · 0,
ending in a non-empty run of 0’s, where π′ contains no 0’s. In all cases, note that π′ must avoid the patterns
101 and 102. Combining the three cases then gives

1(x, q) = 1 + qx1(x, q) + x(1(x, q) − 1) +
qx2

1 − x
(1(x, q) − 1).

Thus,

1(x, q) =
1 − 2x + (1 − q)x2

1 − (2 + q)x + x2 ,

from which this case follows by taking q = 1.
(iv) Let h(x, q) denote the comparable generating function in this case. First note a non-empty ascent

sequence π avoiding both 101 and 110 and containing two or more zeros must be of the form π = 01 · · · iπ′,
where i ≥ 0 andπ′ itself is a non-empty ascent sequence on the letters {0, i+1, i+2, . . .} avoiding the patterns.
Then considering whether a sequence contains one or more zeros gives

h(x, q) = 1 + qxh(x, q) +
x

1 − qx
(h(x, q) − 1),
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which implies

h(x, q) =
1 − (1 + q)x

1 − (1 + 2q)x + q2x2

and completes the proof.

Let Fm denote the set of coverings of the numbers 1, 2, . . . ,m, arranged in a row, by indistinguishable
dominos and indistinguishable squares, where pieces do not overlap, a domino is a piece covering two
numbers, and a square is a piece covering a single number. The members of Fm are also called tilings or
square-and-domino arrangements (see [2, Chapter 1]). Note that |Fm| = Fm+1 for all m. Furthermore, letting s
and d stand for square and domino, respectively, it is easily seen that members of Fm correspond uniquely
to words in the alphabet {d, s} containing k d’s and m − 2k s’s for some k, 0 ≤ k ≤ m

2 . In the proof of the
following proposition, we will identify the members of Fm by such words. Furthermore, given δ ∈ F2m, let
s(δ) be half the number of squares in δ.

Proposition 2.3. If n ≥ 1, then there is a bijection 1 from Sn(021, 101) to F2n−2 such that asc(π) = s(1(π)) for all
π ∈ Sn(021, 101). Therefore, the number of members of Sn(021, 101) having exactly k ascents is

(n−1+k
2k

)
.

Proof. Suppose π ∈ Sn(021, 101), where n ≥ 1. Then we may express π as

π = 0i0 1 j1 0i1 2 j2 0i2 · · · ` j`0i` ,

where ` ≥ 0 represents the largest letter of π, j1, j2, . . . , j` > 0, i0 > 0, and i1, i2, . . . , i` ≥ 0. Let

1(π) = di0−1(sdi1 sd j1−1)(sdi2 sd j2−1) · · · (sdi`sd j`−1).

Then 1(π) ∈ F2n−2 and it may be verified that the mapping 1 is a bijection such that asc(π) = s(1(π)) for all
π. The second statement is an easy consequence of the first.

3. The (3,4)-Classes

In this section, we consider the ascent sequences enumerated by F2n−1 which avoid a pattern of length
three and another of length four. For a couple of cases, we modify the scanning-elements algorithm (see
[7]) used previously on permutations as follows. Let hT(x, q|τ) denote the generating function which counts
the ascent sequences of length n whose first letters form the word τ and that avoid all the patterns in the
set T according to some statistic ρ marked by the variable q, where τ, ρ, and T are given. We may assume
τ avoids all the patterns in T, for otherwise the generating function is zero. Scanning the next letter j, we
obtain

hT(x, q|τ) = x|τ|qρ(τ) +

t∑
j=0

hT(x, q|τ j),

where t = asc(τ) + 1. In some cases, applying this equation repeatedly leads to a finite system of equations
as below which can be solved, and the generating function hT(x, q|τ) would be rational in that case. There
are limitations to this method though. In some cases, the system is infinite and perhaps one could attempt
to solve it using the kernel method, though many times the system cannot be solved in such cases. Fur-
thermore, some sets of patterns T do not permit one to write a meaningful system of equations. Below, we
provide a couple of illustrations of this method in the case when T contains two patterns.

We first consider the problem of counting the members of Sn(110, 0122). Let

f (x, q) =
∑
n≥0

 ∑
π∈Sn(110,0122)

qasc(π)

 xn.

In order to determine f (x, q), we define f (x, q|a1a2 · · · am) to be the generating function counting the ascent
sequences π1π2 · · ·πn ∈ Sn(110, 0122) according to the number of ascents such that π1π2 · · ·πm = a1a2 · · · am.
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From the definitions, we have

f (x, q) = 1 + f (x, q|0),
f (x, q|0) = x + f (x, q|00) + f (x, q|01)

= x + x f (x, q|0) + f (x, q|01),

f (x, q|01) = x2q + f (x, q|010) + f (x, q|011) + f (x, q|012)

= x2q + f (x, q|010) + f (x, q|011) + xq f (x, q|01),

f (x, q|011) = x3q + f (x, q|0111) + f (x, q|0112)

= x3q + x f (x, q|011) + xq f (x, q|011),

f (x, q|010) = x3q + f (x, q|0100) + f (x, q|0101) + f (x, q|0102)

= x3q + x f (x, q|010) + f (x, q|0101) + x2q f (x, q|01),

f (x, q|0101) = x4q2 + f (x, q|01011) + f (x, q|01012) + f (x, q|01013)

= x4q2 + x f (x, q|0101) + xq f (x, q|0101) + f (x, q|01013),

f (x, q|01013) = x5q3 + f (x, q|010131) + f (x, q|010132) + f (x, q|010134)

= x5q3 + x2q f (x, q|0101) + f (x, q|010132) + xq f (x, q|01013),

f (x, q|010132) = x6q3 + f (x, q|0101321) + f (x, q|0101324)

= x6q3 + f (x, q|0101321) + xq f (x, q|010132),

f (x, q|0101321) = x7q3 + f (x, q|01013211) + f (x, q|01013214)

= x7q3 + x f (x, q|0101321) + xq f (x, q|0101321).

The reduction of letters in various steps may be explained through bijections. For example, we have
f (x, q|012) = xq f (x, q|01), since the map 01π3π4 · · ·πn−1 7→ 012π′3π

′

4 · · ·π
′

n−1, where π′i = πi + 1 if πi ≥ 2
and π′i = πi if πi = 0, 1, defines a bijection between the set {α ∈ Sn−1(110, 0122)|α1α2 = 01} and the
set {α ∈ Sn(110, 0122)|α1α2α3 = 012}. As a second example, to show f (x, q|010131) = x2q f (x, q|0101),
observe that the map 0101π5π5 · · ·πn−2 7→ 010131π̂5π̂6 · · · π̂n−2, where π̂i = πi + 1 if πi ≥ 3 and π̂i = πi
if πi = 1, 2, defines a bijection between the set {α ∈ Sn−2(110, 0122)|α1α2α3α4 = 0101} and the set {α ∈
Sn(110, 0122)|α1α2α3α4α5α6 = 010131}.

Solving the above system of equations (using Maple) then gives

f (x, q) = 1 +
x(1 − xq)

(1 − xq)2 − x
= 1 +

∑
j≥0

x j+1

(1 − xq)2 j+1
= 1 +

∑
j≥0

∑
i≥0

(
2 j + i

i

)
xi+ j+1qi.

Hence, we can state the following result.

Theorem 3.1. The number of ascent sequences in Sn(110, 0122) is given by F2n−1. Moreover, the number of ascent
sequences in Sn(110, 0122) with exactly k ascents is given by

(2n−2−k
k

)
, 0 ≤ k ≤ n − 1.

We next count the members of Sn(100, 0121). Let

1(x, q) =
∑
n≥0

 ∑
π∈Sn(100,0121)

qasc(π)

 xn.

In order to determine 1(x, q), we define 1(x, q|a1a2 · · · am) to be the generating function counting the ascent
sequences π1π2 · · ·πn ∈ Sn(100, 0121) according to the number of ascents such that π1π2 · · ·πm = a1a2 · · · am.
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From the definitions, we have

1(x, q) = 1 + 1(x, q|0),
1(x, q|0) = x + x1(x, q|0) + 1(x, q|01),

1(x, q|01) = x2q + 1(x, q|010) + x1(x, q|01) + xq1(x, q|01),

1(x, q|010) = x3q + 1(x, q|0101) + 1(x, q|0102),

1(x, q|0102) =
x4q2

1 − x − xq
,

1(x, q|0101) = x4q2 + x1(x, q|0101) + 1(x, q|01012) + 1(x, q|01013),

1(x, q|01012) = x5q3 + x1(x, q|01012) + xq1(x, q|01012) + xq1(x, q|01013),

1(x, q|01013) = x5q3 + 1(x, q|010132) + x1(x, q|01013) + xq1(x, q|01013),

1(x, q|010132) = x6q3 + x2q1(x, q|01012) + 1(x, q|0101324),

1(x, q|0101324) =
x7q4

1 − x − xq
.

The reduction of letters may be explained through bijections as in the previous case. Note that

1(x, q|0102) =
x4q2

1−x−xq since the fifth letter (if it occurs) is either a 2 or a 3, with each subsequent letter
either equal to or one more than its predecessor with a factor of q introduced each time the latter occurs.
Similar reasoning may be used to explain the formula for 1(x, q|0101324).

Solving the above system of equations (using Maple) then gives

1(x, q) = 1 +
x(1 − xq)

(1 − xq)2 − x
= 1 +

∑
j≥0

x j+1

(1 − xq)2 j+1
= 1 +

∑
j≥0

∑
i≥0

(
2 j + i

i

)
xi+ j+1qi.

Hence, we can state the following result.

Theorem 3.2. The number of ascent sequences in Sn(100, 0121) is given by F2n−1. Moreover, the number of ascent
sequences in Sn(100, 0121) with exactly k ascents is given by

(2n−2−k
k

)
, 0 ≤ k ≤ n − 1.

In the following proposition, we give the members of the (3, 4)-Wilf equivalence class for ascent se-
quences corresponding to the Fibonacci number F2n−1.

Proposition 3.3. If n ≥ 0, then An(u, v) = F2n−1 for the following pairs (u, v):

(1) (021, 0101) (2) (021, 0120) (3) (021, 0122)
(4) (100, 0121) (5) (101, 0011) (6) (101, 0102)
(7) (101, 0110) (8) (101, 0121) (9) (102, 0001)
(10) (102, 0012) (11) (102, 0101) (12) (110, 0101)
(13) (110, 0122) (14) (120, 0123).

Proof. Note that cases (13) and (4) were shown above and case (3) is treated in the next section. For (2), it
is not hard to show that avoiding (021, 0120) is logically equivalent to avoiding (021, 120), the latter given
in Proposition 2.2 above. A modification of the proof given in [10, Theorem 3.3] concerning avoiding the
single pattern 0123 yields (14). The remaining cases are easier and may be done using a variety of algebraic
and combinatorial arguments, which we leave as exercises for the interested reader.

Remark: Numerical evidence shows that there are no other members of the (3,4)-Wilf equivalence class
corresponding to F2n−1.
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4. The Case of Avoiding 021 and 0122

In this section, we seek to determine the joint distribution of some statistics on Sn(021, 0122), and we
find the generating function for this distribution from which explicit formulas may be obtained. Taking all
but one of the parameters to be unity will show An(021, 0122) = F2n−1 if n ≥ 1 and thus various refinements
of the numbers F2n−1 are obtained. By the following proposition, we also have An(021, 0120) = F2n−1.

Proposition 4.1. If n ≥ 1, then An(021, 120) = An(021, 0122).

Proof. Suppose λ ∈ Sn(021, 120), where n ≥ 1. Then λ may be expressed in the form

λ = αw1w2 · · ·w`,

where α is binary, ` ≥ 0 (` = 0 corresponds to when λ is binary), and wi is a non-empty run of the letter ri for
some ri ≥ 2, with r1 < r2 < · · · < r`. Conversely, any sequence of this form is seen to belong to Sn(021, 120).
Define the mapping f of Sn(021, 120) by

f (λ) = αw′1w′2 · · ·w
′

`,

where w′i is obtained from wi by replacing all but the first letter of wi with 0. It may be verified that f is a
bijection between Sn(021, 120) and Sn(021, 0122).

Let An = Sn(021, 0122). We first refine the set An as follows. Given n ≥ 1 and 0 ≤ s ≤ r ≤ m < n, let
An,m,r,s denote the subset ofAn whose members have m ascents, largest letter r, and last letter s. For example,
we have π = 0110120030 ∈ A10,4,3,0. The numbers an,m,r,s = |An,m,r,s| may be determined as described in the
following lemma.

Lemma 4.2. The array an,m,r,s can assume non-zero values only when n ≥ 1 and 0 ≤ s ≤ r ≤ m < n. It satisfies the
conditions an,0,0,0 = 1 and an,m,0,0 = 0 if n,m ≥ 1. For n ≥ 2 and 1 ≤ m ≤ n − 1, the numbers an,m,r,s satisfy

an,m,r,0 =

r∑
i=0

an−1,m,r,i, r ≥ 1, (1)

and

an,m,r,s =

r−1∑
j=0

j∑
i=0

an−1,m−1, j,i, r = s ≥ 2, (2)

with an,m,r,s = 0 if r > s ≥ 1 and an,m,1,1 =
( n−1

2m−1
)
.

Proof. The first two statements are clear from the definitions. To show (1), we delete the final 0 from
π ∈ An,m,r,0, since it is extraneous concerning a possible occurrence of 021 or 0122, and the resulting ascent
sequence belongs to

⋃r
i=0An−1,m,r,i. Furthermore, note thatAn,m,r,s is empty if r > s ≥ 1 since we must avoid

021.
So suppose π ∈ An,m,s,s, where 1 ≤ m ≤ n − 1 and s ≥ 1. If s = 1, then π ∈ An,m,1,1 is a binary sequence

starting with 0, ending in 1, and containing exactly m ascents, which implies an,m,1,1 =
( n−1

2m−1
)
. If s ≥ 2, then

we remove the s in the last position from π ∈ An,m,s,s. Note that this is the only occurrence of s since we
are to avoid 0122, whence an ascent is lost from π when we remove s. Thus the resulting ascent sequence
belongs toAn−1,m−1, j,i for some i and j with j ≤ s − 1. Summing over all possible i and j gives (2).

Define the polynomials An,m,r(u) =
∑r

s=0 an,m,r,sus, where n ≥ 1 and 0 ≤ r ≤ m < n. Note that

An,m,0(u) =

1, if m = 0;
0, if m > 0,
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and

An,m,1(u) =

(
n − 1
2m

)
+

(
n − 1

2m − 1

)
u, m ≥ 1,

the latter holding since there are
(n−1

2m
)

members ofAn,m,1,0 and
( n−1

2m−1
)

members ofAn,m,1,1.
Let An,m(u, v) =

∑m
r=0 An,m,r(u)vr, where 0 ≤ m < n. Note that An,0(u, v) = 1 and

An,1(u, v) = An,1,1(u)v =

(
n − 1

2

)
v + (n − 1)uv.

The polynomials An,m(u, v) satisfy the following recurrence for m ≥ 2.

Lemma 4.3. If n ≥ 3 and 2 ≤ m ≤ n − 1, then

An,m(u, v) =

(
n − 1

2m − 1

)
uv + An−1,m(1, v) +

uv
1 − uv

(An−1,m−1(1,uv) − (uv)mAn−1,m−1(1, 1)). (3)

Proof. First note that if r ≥ 2, then by (1) and (2), we have

An,m,r(u) =

r∑
s=0

an,m,r,sus =

r∑
i=0

an−1,m,r,i + ur
r−1∑
j=0

j∑
i=0

an−1,m−1, j,i

= An−1,m,r(1) + ur
r−1∑
j=0

An−1,m−1, j(1). (4)

By (4), we then have

An,m(u, v) = An,m,0(u) + An,m,1(u)v +

m∑
r=2

An,m,r(u)vr

= An,m,1(u)v +

m∑
r=2

An−1,m,r(1)vr +

m∑
r=2

(uv)r
r−1∑
j=0

An−1,m−1, j(1)

=

(
n − 1
2m

)
v +

(
n − 1

2m − 1

)
uv + (An−1,m(1, v) − An−1,m,1(1)v)

+

m−1∑
j=0

An−1,m−1, j(1)
m∑

r= j+1

(uv)r

=

(
n − 1
2m

)
v +

(
n − 1

2m − 1

)
uv + An−1,m(1, v) −

((
n − 2
2m

)
+

(
n − 2

2m − 1

))
v

+

m−1∑
j=0

An−1,m−1, j(1)
(uv) j+1

− (uv)m+1

1 − uv

=

(
n − 1

2m − 1

)
uv + An−1,m(1, v) +

uv
1 − uv

(An−1,m−1(1,uv) − (uv)mAn−1,m−1(1, 1)),

which completes the proof.

If n ≥ 1, then let An(u, v,w) =
∑n−1

m=0 An,m(u, v)wm and let

f (x; u, v,w) =
∑
n≥1

An(u, v,w)xn.

Then f satisfies the following functional equation.
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Lemma 4.4. We have

f (x; u, v,w) =
x − (1 + uvw)x2

1 − x
+

uvwx2

(1 − x)2 − wx2 + x f (x; 1, v,w)

+
uvwx
1 − uv

( f (x; 1,uv,w) − uv f (x; 1, 1,uvw)). (5)

Proof. If n ≥ 3, then by (3), we have

An(u, v,w) = An,0(u, v) + An,1(u, v)w +

n−1∑
m=2

An,m(u, v)wm

= 1 +

(
n − 1

2

)
vw + (n − 1)uvw + uv

n−1∑
m=2

(
n − 1

2m − 1

)
wm

+ (An−1(1, v,w) − An−1,1(1, v)w − 1) +
uvw

1 − uv
(An−1(1,uv,w) − 1)

−
u2v2w
1 − uv

(An−1(1, 1,uvw) − 1)

= (n − 2)uvw + uv

n−1∑
m=1

(
n − 1

2m − 1

)
wm
− (n − 1)w

 + An−1(1, v,w)

+
uvw

1 − uv
(An−1(1,uv,w) − uvAn−1(1, 1,uvw))

= −uvw +
uv
√

w
2

(
(1 +

√
w)n−1

− (1 −
√

w)n−1
)

+ An−1(1, v,w)

+
uvw

1 − uv
(An−1(1,uv,w) − uvAn−1(1, 1,uvw)). (6)

Note that (6) also holds for n = 2 since A1(u, v,w) = 1. Multiplying (6) by xn and summing over n ≥ 2
implies

f (x; u, v,w) − x = −
uvwx2

1 − x
+

uv
√

wx
2

(
(1 +

√
w)x

1 − (1 +
√

w)x
−

(1 −
√

w)x
1 − (1 −

√
w)x

)
+ x f (x; 1, v,w) +

uvwx
1 − uv

( f (x; 1,uv,w) − uv f (x; 1, 1,uvw)),

which gives (5).

Theorem 4.5. We have

f (x; 1, 1,w) =
x − x2

1 − (2 + w)x + x2 , (7)

and thus the number of ascent sequences in An with exactly k ascents is given by
(n−1+k

2k
)
. In particular, we have

|An| = F2n−1 if n ≥ 1.

Proof. We will only show (7), the second and third statements being easy consequences of it. Setting u = 1
in (5) gives(

1 − x −
vwx
1 − v

)
f (x; 1, v,w) =

x − (1 + vw)x2

1 − x
+

vwx2

(1 − x)2 − wx2 −
v2wx
1 − v

f (x; 1, 1, vw). (8)

To solve (8), we use the kernel method (see [1]). Setting the coefficient of f (x; 1, v,w) on the left-hand side of
(8) equal to zero, and solving for v = vo in terms of x and w gives 1− x = vowx

1−vo
, i.e., vo = 1−x

1−x+wx . Setting v = vo
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in (8) then gives

vo(1 − x) f (x; 1, 1, vow) = x −
vowx2

1 − x
+

vowx2

(1 − x)2 − wx2 = x − x(1 − vo) +
vowx2

(1 − x)2 − wx2

= vox
(
1 +

wx
(1 − x)2 − wx2

)
and thus

f (x; 1, 1, vow) =
x

1 − x
+

wx2

(1 − x)((1 − x)2 − wx2)
. (9)

Let us replace the argument vow appearing on the left-hand side of (9) with t, i.e., w =
t(1−x)

1−x−tx . Then (9) may
be rewritten as

f (x; 1, 1, t) =
x

1 − x
+

tx2

(1 − x − tx)
(
(1 − x)2 −

tx2(1−x)
1−x−tx

) =
x

1 − x
+

tx2

(1 − x)((1 − x)(1 − x − tx) − tx2)

=
x − x2

1 − (2 + t)x + x2 ,

which gives (7).

Using (7) and (8), one may obtain an expression for f (x; 1, v,w), and thus for f (x; u, v,w), via (5). The
formula so obtained for f (x; u, v,w) is a somewhat complicated rational function, as are the expressions for
the generating functions f (x; u, 1, 1) and f (x; 1, v, 1).

The bijection used in the proof of Proposition 4.1 above is seen to preserve both the largest letter and
the number of ascents. Thus, in particular, there are also

(n−1+k
2k

)
members of Sn(021, 120) having k ascents

for 0 ≤ k ≤ n− 1. We remark that while we were able to find a functional equation comparable to the one in
(5) above corresponding to Sn(021, 120), it is possible only to determine the cardinality of Sn(021, 120) from
this equation.

Finally, it would be interesting to have direct bijective proofs of Theorems 3.1, 3.2, and 4.5.

References

[1] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, Generating functions for
generating trees, (Formal Power Series and Algebraic Combinatorics, Barcelona, 1999), Discrete Math. 246(1-3) (2002) 29–55.

[2] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America,
2003.

[3] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations,
J. Combin. Theory Ser. A 117(7) (2010) 884–909.

[4] M. Dukes and R. Parviainen, Ascent sequences and upper triangular matrices containing non-negative integers, Electron. J.
Combin. 17(1) (2010) #R53.

[5] M. Dukes, J. Remmel, S. Kitaev, and E. Steingrı́msson, Enumerating (2+2)-free posets by indistinguishable elements, J. Comb.
2(1) (2011) 139–163.

[6] P. Duncan and E. Steingrı́msson, Pattern avoidance in ascent sequences, Electron. J. Combin. 18(1) (2011) #P226.
[7] G. Firro and T. Mansour, Three-letter-pattern avoiding permutations and functional equations, Electron. J. Combin. 13 (2006)

#R51.
[8] S. Kitaev, Patterns in Permutations and Words, occurring in Monographs in Theoretical Computer Science (with a forward by J.

Remmel), Springer-Verlag, ISBN 978-3-642-17332-5, 2011.
[9] S. Kitaev and J. Remmel, Enumerating (2+2)-free posets by the number of minimal elements and other statistics, Discrete Appl.

Math. 159 (2011) 2098–2108.
[10] T. Mansour and M. Shattuck, Some enumerative results related to ascent sequences, Discrete Math. 315-316 (2014) 29–41.
[11] N. J. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org.
[12] D. Zeilberger, Enumeration schemes, and more importantly, their automatic generation, Ann. Comb. 2 (1998) 185–195.


